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Abstract

In this paper, we first present a self-training semi-supervised support vector machine (SVM) algorithm and its corresponding model
selection method, which are designed to train a classifier with small training data. Next, we prove the convergence of this algorithm. Two
examples are presented to demonstrate the validity of our algorithm with model selection. Finally, we apply our algorithm to a data set
collected from a P300-based brain computer interface (BCI) speller. This algorithm is shown to be able to significantly reduce training
effort of the P300-based BCI speller.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In many classification applications, collecting labeled
instances for training is either difficult, expensive or time-
consuming. Meanwhile unlabeled data may be relatively
easier to obtain. If only a small amount of labeled data
and a large amount of unlabeled data are available, semi-
supervised learning can often provide us with a satisfactory
classifier. In recent years, semi-supervised learning has
received considerable attention due to its potential for
reducing the effort of labeling data. Existing semi-super-
vised algorithms include expectation maximization (EM)
algorithm, self-training algorithms, co-training algorithms
(Nigam and Ghani, 2000; Blum and Mitchell, 1998),
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entropy minimization (Grandvalet and Bengio, 2004),
graph-based methods (Zhou et al., 2004), etc. It is well
known that support vector machine is a strong classifier.
A class of common semi-supervised learning algorithms
based on SVM are transductive support vector machines
(TSVMs) (Vapnik, 1998; Joachims, 1999, etc.), in which
the labels of test data set leading to the lowest structural
risk are chosen. Since the optimization problem of a typical
TSVM is non-convex and finding its exact solution is NP-
hard, several approximation algorithms have been estab-
lished (Bennett and Demiriz, 1998; Demiriz and Bennett,
2000; Chapelle and Zien, 2005; Joachims, 2003). However,
when the size of test data set is big (e.g. larger than 1000),
TSVM type algorithms are still time-consuming (see Exam-
ple 2 in Section 3). In several other studies (Park and
Zhang, 2004; Brefeld and Scheffer, 2004; Kockelkorn
et al., 2003; Kiritchenko and Matwin, 2002), a multi-view
co-training support vector machine and its variants were
presented. For text classification, experiments have clearly
shown that the co-training SVM outperforms the
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co-training naive Bayes (Kiritchenko and Matwin, 2002).
Compared with TSVM algorithms, the computational
burden of the co-training support vector machine is much
lower.

In semi-supervised learning, the self-training EM algo-
rithm with a naive Bayes classifier is commonly used. This
algorithm is simple, effective in many cases and converges
(Xu and Jordan, 1996). If the naive Bayes classifier in the
self-training EM algorithm is replaced by a standard
SVM, then a self-training SVM algorithm is obtained. In
this paper, we analyze this self-training SVM algorithm,
which is similar to the case of the co-training SVM in (Park
and Zhang, 2004; Brefeld and Scheffer, 2004) when only
one view of data is available. The co-training SVM is an
incremental algorithm. However, the self-training SVM in
this paper is iterative. Furthermore, it will be proved that
the objective function of this self-training SVM (named
as structural risk) monotonically decreases during its itera-
tions. Therefore, the convergence and effectiveness of this
algorithm are guaranteed. Our data analysis examples
show its fast convergence, light computational burden as
well as effectiveness.

In SVM, there is a regularization parameter C to be set in
advance. This procedure is called model selection. Model
selection is very important for SVM type algorithms since
this parameter can affect the performance of SVM. Gener-
ally, model selection is carried out using cross-validation
on training data set. However, if the training data set is
small, the result obtained by cross-validation is not reliable.
In this paper, we present a semi-supervised learning-based
model selection method, in which the test data set are used.
Our model selection method is suitable for small training
data set.

As an application example, we will illustrate how to use
this algorithm in a P300-based brain computer interface
(BCI) speller. BCIs provide an alternative means of com-
munication and control for people with severe motor dis-
abilities (Birbaumer et al., 1999), thus research into BCIs
has received more attention in recent years, as seen in
(Donoghue, 2002; Kubler et al., 2001). Being non-invasive,
electroencephalogram (EEG)-based BCI measures specific
components of EEG activity, extracts features and trans-
lates these features into control signals to devices such as
a robot arm or a cursor. For many electroencephalogram
(EEG)-based brain computer interfaces (BCIs), a tedious
and time-consuming training process is needed to set
parameters. In BCI Competition 2005 dataset IVa
(BCI2005, 2005), reducing the training process has been
explicitly proposed as a task for competitors. Furthermore,
an effective BCI system needs to be adaptive to dynamic
variations of brain signals, i.e. its parameters need to be
adjusted online.

We will use our self-training SVM algorithm to analyze
a data set collected from a P300-based BCI speller system
and simulate an online scenario. We will illustrate that this
algorithm can effectively reduce the training time of the
P300-based BCI speller. We also point out that this algo-
rithm can be used to improve the adaptability of the BCI
system.
2. Self-training semi-supervised SVM algorithm

In this section, we first present the steps of a self-training
semi-supervised SVM algorithm and a model selection
method, then analyze the convergence of our algorithm.

2.1. Algorithm

A standard SVM classifier for two-class problem can be
defined as

min
1

2
kwk2 þ C

XN

i¼1

ni

s:t: yiðwTxi þ bÞP 1� ni; ni P 0; i ¼ 1; . . . ;N ;

ð1Þ

where xi 2 Rn is a feature vector of a training sample,
yi 2 f�1; 1g is the label of xi, i ¼ 1; . . . ;N , C > 0 is a regu-
larization constant.

The steps of a self-training semi-supervised SVM algo-
rithm are as follows:

Algorithm 1. Suppose that we have a small training set F I

containing N 1 samples fxi; i ¼ 1; . . . ;N1g with given labels
½y0ð1Þ; . . . ; y0ðN 1Þ�, and a test set F T containing N2 samples
fxN1þi; i ¼ 1; . . . ;N 2g with unknown labels.

Step 1. Using F I , we train a SVM, and perform classifica-
tion on F T . The parameters of the SVM are
denoted as wð1Þ 2 Rn, nð1Þ 2 RN1 and bð1Þ 2 R. The
predicted labels are denoted as ½yð1Þð1Þ; . . . ;
yð1ÞðN 2Þ�. The superscript denotes the current itera-
tion number.

Step 2. The kth iteration (k ¼ 2; . . .) follows Steps 2.1–2.3.
Step 2.1. Define a new training set as F N ¼ F Iþ

F T , where the labels of F T are predicted
in the ðk � 1Þth iteration.

Step 2.2. Using the augmented training set F N ,
we train a SVM, and perform classifica-
tion again on F T . The parameters of the
SVM are denoted as wðkÞ 2 Rn, nðkÞ 2
RN1þN2 and bðkÞ 2 R. The predicted labels
are denoted as ½yðkÞð1Þ; . . . ; yðkÞðN 2Þ�.

Step 2.3. Calculate the objective function value in
(1),

f ðwðkÞ; nðkÞÞ ¼ 1

2
kwðkÞk2 þ C

XN1þN2

i¼1

nðkÞi : ð2Þ

Step 3. (Termination step): Given a pre-determined posi-
tive constant d0: if jf ðwðkÞ; nðkÞÞ � f ðwðk�1Þ; nðk�1ÞÞj
< d0, the algorithm stops after the kth iteration,
and the predicted labels ½yðkÞð1Þ; . . . ; yðkÞðN 2Þ� of
the test set are the final classification results.
Otherwise, perform the ðk þ 1Þth iteration.



Y. Li et al. / Pattern Recognition Letters 29 (2008) 1285–1294 1287
2.2. Model selection

In Algorithm 1, we need to set the regularization param-
eter C of SVM through model selection. In our case, we do
not use cross-validation on training data set to search the
valued of C because Algorithm 1 is designed to work with
small training data set. Cross-validation with small training
data set may not be reliable.

Now we present a model selection method to determine
C with the help of test data and Fisher ratio. In this
method, we search the value of C on a finite set
fC1; . . . ;CLg. In the optimization of a SVM, the objective
function contains two items, one is the square of the
2-norm of the weight vector (kwk2), which reflects the
margin, the other is the residual error. The two items are
regularized by C. If we emphasize the margin, we can set
C small; otherwise, if we emphasize the residual error, we
can set C big. As our experience, we suggest to choose C

in the interval ð0; 1�. More details on how to choose the
set fC1; . . . ;CLg can be seen in references on SVM e.g.
(Chang and Lin, 2001).

Given C 2 fC1; . . . ;CLg, we run K0 iterations of Algo-
rithm 1, where K0 is a preset positive integer; we set
K0 ¼ 10 because, as will be seen, Algorithm 1 converges
in about 10 iterations generally. After the kth iteration
(k ¼ 1; . . . ;K0), we can obtain a SVM score for each data
sample in the initial training data set and the test data
set. Using the given labels of the training set F I and the
predicted labels ½yðkÞð1Þ; . . . ; yðkÞðN 2Þ� of the test set F T we
separate the set of scores into two subsets SðkÞ1 (with labels
‘‘+1”) and SðkÞ2 (with labels ‘‘�1”).

We now calculate the Fisher ratio,

RðC; kÞ ¼ ðm
ðkÞ
1 � mðkÞ2 Þ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðkÞ1 rðkÞ2

q ; ð3Þ

where k ¼ 1; . . . ;K0. mðkÞ1 and rðkÞ1 are the mean value and
the variance of SðkÞ1 , respectively. mðkÞ2 and rðkÞ2 are the mean
value and the variance of SðkÞ2 , respectively.

We consider that RðC; 1Þ is calculated from the initial
small training data set and may not be reliable. Thus we
find the maximum of the last K0 � 1 Fisher ratios,

RmðCÞ ¼ maxfRðC; 2Þ; . . . ;RðC;K0Þg; ð4Þ

where C 2 fC1; . . . ;CLg.
Suppose that RmðC0Þ is the maximum of

fRmðCÞjC 2 fC1; . . . ;CLgg. Then C0 is the selected parame-
ter value for C.

The above method for selecting C is based on the fact
that the Fisher ratio generally represents the separability
of a corresponding data set, i.e. a large Fisher ratio gener-
ally implies high separability of the data set. We choose the
C value which leads to the highest Fisher ratio in training
data set and test data set (with predicted labels). This is
similar to transductive SVM, where the labels of test data
set leading to the lowest structural risk are chosen. In
Example 1 and Section 3, we will demonstrate the validity
of this model selection method.

Generally, for a semi-supervised learning algorithm with
parameters, this model selection method may be used to
select parameters when the training data set is small. For
instance, in the self-training EM algorithm with a naive
Bayes classifier, we can directly use this model selection
method for parameter setting except that the classifier is
naive Bayes classifier instead of the SVM classifier.
Another example, using this method we can choose those
values of the parameters (including C) for transductive
SVM algorithms which lead to the highest Fisher ratio in
training data set and test data set (with predicted labels).
In this case, the classifier is a transductive SVM instead
of the self-training SVM in this paper. But then, the com-
putational burden might be very heavy for large data set
as mentioned before.

2.3. Convergence analysis

We now analyze the convergence of Algorithm 1 and
have the following theorem.

Theorem 1. For f ðwðkÞ; nðkÞÞ defined in (2), we have,

f ðwðk�1Þ; nðk�1ÞÞP f ðwðkÞ; nðkÞÞ: ð5Þ

Proof. According to Step 1 of Algorithm 1, ðwð1Þ; nð1Þ; bð1ÞÞ
is the solution of following optimization problem with
training data set F I ,

min
1

2
kwk2 þ C

XN1

i¼1

ni

s:t: y0ðiÞðwTxi þ bÞP 1� ni; ni P 0; i ¼ 1; . . . ;N 1;

ð6Þ

where y0ðiÞ are the true initial training data labels, which
remain constant in the iterations of Algorithm 1.

Note that the predicted labels ½yð1Þð1Þ; . . . ; yð1ÞðN2Þ� are
defined by the following inequalities:

yð1ÞðiÞððwð1ÞÞTxN1þi þ bð1ÞÞP 0; i ¼ 1; . . . ;N 2: ð7Þ

We now expand the vector nð1Þ 2 RN1þN2 by defining

nð1ÞN1þi ¼
0; if yð1ÞðiÞððwð1ÞÞTxN1þi þ bð1ÞÞP 1;

1� yð1ÞðiÞððwð1ÞÞTxN1þi þ bð1ÞÞ; otherwise;

(
ð8Þ

where i ¼ 1; . . . ;N 2.
Define a label vector yð1Þ ¼ ½yð1Þ1 ; . . . ; yð1ÞN1þN2

� ¼ ½y0ð1Þ;
. . . ; y0ðN 1Þ; yð1Þð1Þ; . . . ; yð1ÞðN2Þ�. For the second iteration
of Algorithm 1, we can find that ðwð2Þ; nð2Þ; bð2ÞÞ is the
solution of the following optimization problem with
training data set F I þ F T :
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min
1

2
kwk2 þ C

XN1þN2

i¼1

ni

s:t: yð1Þi ðwTxi þ bÞP 1� ni; ni P 0;

i ¼ 1; . . . ;N 1 þ N 2:

ð9Þ

From (7) and (8), ðwð1Þ; nð1Þ; bð1ÞÞ is a feasible solution of
(9). Since ðwð2Þ; nð2Þ; bð2ÞÞ is an optimal solution of (9), thus
we have

f ðwð1Þ; nð1ÞÞP f ðwð2Þ; nð2ÞÞ: ð10Þ
Similarly, ðwðk�1Þ; nðk�1Þ; bðk�1ÞÞ (k > 2) is the solution of

following optimization problem,

min
1

2
kwk2 þ C

XN1þN2

i¼1

ni

s:t: yðk�2Þ
i ðwTxi þ bÞP 1� ni; ni P 0;

i ¼ 1; . . . ;N 1 þ N 2;

ð11Þ

where label vector yðk�2Þ ¼ ½y0ð1Þ; . . . ; y0ðN 1Þ; yðk�2Þð1Þ; . . . ;
yðk�2ÞðN 2Þ�.
ðwðkÞ; nðkÞ; bðkÞÞ is the solution of following optimization

problem:

min
1

2
kwk2 þ C

XN1þN2

i¼1

ni

s:t: yðk�1Þ
i ðwTxi þ bÞP 1� ni; ni P 0;

i ¼ 1; . . . ;N 1 þ N 2;

ð12Þ

where label vector yðk�1Þ ¼ ½y0ð1Þ; . . . ; y0ðN 1Þ; yðk�1Þð1Þ; . . . ;
yðk�1ÞðN 2Þ�.

We now prove that ðwðk�1Þ; nðk�1Þ; bðk�1ÞÞ is a feasible
solution of (12). There are two cases:

1. If yðk�2Þ
i ¼ yðk�1Þ

i (e.g. this equality always holds for
i ¼ 1; . . . ;N 1), then according to the constraint of (11),

yðk�1Þ
i ððwðk�1ÞÞTxi þ bðk�1ÞÞ ¼ yðk�2Þ

i ððwðk�1ÞÞTxi þ bðk�1ÞÞ
P 1� nðk�1Þ

i ; nðk�1Þ
i P 0: ð13Þ

2. If yðk�2Þ
i 6¼ yðk�1Þ

i (e.g., this inequality may hold for i >
N 1), then

yðk�2Þ
i ððwðk�1ÞÞTxi þ bðk�1ÞÞ < 0: ð14Þ

This is because from the definition of yðk�1Þ
i , yðk�1Þ

i

ððwðk�1ÞÞTxi þ bðk�1ÞÞP 0.

Thus we have

yðk�1Þ
i ððwðk�1ÞÞTxi þ bðk�1ÞÞ > yðk�2Þ

i ððwðk�1ÞÞTxi þ bðk�1ÞÞ
P 1� nðk�1Þ

i : ð15Þ

Until now, we have proved that ðwðk�1Þ; nðk�1Þ; bðk�1ÞÞ sat-
isfies the constraints of (12). That is to say, it is a feasible
solution of (12). Noting that ðwðkÞ; nðkÞ; bðkÞÞ is the optimal
solution of (12), hence we have the inequality in (5). The
theorem is proven. h
Remarks 1. (i) Since f ðwðkÞ; nðkÞÞP 0, it follows from The-
orem 1 that ff ðwðkÞ; nðkÞÞg is convergent. Thus Algorithm 1
is convergent. This will be demonstrated by our data anal-
ysis examples. (ii) The objective function in (1) can be
explained as a structural risk (Mika, 2002). According to
Theorem 1, the structural risk of the sum of the training
set and the test set decreases with every iteration of Algo-
rithm 1. This generally leads to increased classification
accuracy rates. (iii) According to our simulations and real
data analysis, Algorithm 1 converges very fast (generally
in 10 iterations). (iv) Finally, although a minimum of
f ðwðkÞ; nðkÞÞ can be found through the iterations of Algo-
rithm 1, this minimum is only guaranteed to be local.

In (Xu and Jordan, 1996), a standard EM algorithm
with a naive Bayesian classifier was analyzed, which is also
iterative and self-training. Furthermore, the EM algorithm
is convergent since the objective function (expectation of a
likelihood) of this algorithm monotonically increases dur-
ing its iterations. From the above analysis, we can find that
our algorithm has a similar working mechanism to the EM
algorithm although the objective functions and classifiers
of these two algorithms are different. Generally, if the dis-
tribution of the data is Gaussian (or close to Gaussian) and
the dimension of the data is not very high, the EM algo-
rithm may be used for classification; otherwise, the self-
training semi-supervised SVM algorithm in this paper
might obtain better results.

3. Simulation results

In this section, we present two data analysis examples.
In the first example, we mainly demonstrate the validity
of our model selection method using toy data. In the sec-
ond example, analysis results for several real-world data
sets are presented to demonstrate the effectiveness and fast
convergence of our algorithm. Additionally, all SVM clas-
sifications in the iterations of Algorithm 1 are performed
by LIBSVM (Chang and Lin, 2001).

Example 1. We demonstrate the validity and convergence
of our semi-supervised SVM algorithm with model selec-
tion through 100 independent simulations.

In each simulation, we first randomly generate a data
set. Each data sample is a 16 dimensional feature vector.
The vectors in the first class are generated by a 16 dimen-
sional Gaussian distribution with identity covariance
matrix and zero mean vector. The vectors in the second
class are generated as follows: we first construct a mean
vector Me 2 R16 and a diagonal covariance matrix
V 2 R16�16. The entries of Me are drawn from a uniform
distribution in [0,1.3], while the diagonal entries of V are
drawn from a uniform distribution in [0, 1]. Then we use
the 16 dimensional Gaussian distribution with covariance
matrix V and mean vector Me to generate the vectors in
the second class. The initial training data set contains 10
vectors with known labels, while the test set contains 490
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Fig. 1. Analysis results in Example 1. The left subplot shows two curves of
average prediction accuracy rates rateðkÞ (‘‘�”) and grateðkÞ (‘‘o”). The
curves with stars are obtained by Algorithm 1 with model selection, the
curves with circles are obtained by Algorithm 1 without model selection.
The middle subplot shows the average structural risk, while the right
subplot shows the average Fisher ratios.
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Fig. 2. Left: decreasing tendency of structural risk. Right: the curve with
circles depicts the Fisher ratios obtained with the selected C0, while the
curve with stars depicts the average Fisher ratios over all candidates of C.
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data vectors without labels. We also generate an indepen-
dent test set containing 100 data vectors to further validate
our algorithm. Note that the independent test set is not
used in the retraining process. There are 600 samples in
total, of which 300 samples belong to the first class while
the other 300 samples belong to the second class.

We apply Algorithm 1 to the above data set for classifi-
cation. In this example, the number of iterations is fixed to
10 in order to see the details of iterations.

In each run, we first find a C value from 20 candidates
using our model selection method in Section 2.2, where
C 2 f0:01; 0:02; . . . ; 0:2g. For the kth iteration of the jth
run (k ¼ 1; . . . ; 10, j ¼ 1; . . . ; 100), we obtain two classifica-
tion accuracy rates ratetðC0; k; jÞ and rateinðC0; k; jÞ for the
test data set and the independent test data set, respectively,
where C0 is the selected parameter for the jth run.

We now calculate the average prediction accuracy rates
of ratetðC0; k; jÞ and rateinðC0; k; jÞ,

rateðkÞ ¼ 1

200

X100

j¼1

ðratetðC0; k; jÞ þ rateinðC0; k; jÞÞ; ð16Þ

where k represents the kth iteration.
In order to demonstrate the validity of our method for

model selection, for each Ci 2 f0:01; 0:02; . . . ; 0:2g, we
also calculate the prediction accuracy rates ratetðCi; k; jÞ
and rateinðCi; k; jÞ for test data set and the independent
test data set, respectively. We then calculate the average
value of ratetðCi; k; jÞ and rateinðCi; k; jÞ over Ci and j

as follows:

grateðkÞ ¼ 1

4000

X20

i¼1

X100

j¼1

ðratetðCi; k; jÞ þ rateinðCi; k; jÞÞ:

ð17Þ
The left subplot of Fig. 1 shows two curves of the aver-

age prediction accuracy rates rateðkÞ and grateðkÞ. The
curve with ‘‘*” depicts rateðkÞ, which is obtained by Algo-
rithm 1 with selection of C. The other one with ‘‘o” depictsgrateðkÞ, which is obtained by Algorithm 1 without selection
of C. From this subplot, we first see that the classification
accuracy rates rateðkÞ increase in the iterations of Algo-
rithm 1 with model selection. By comparing the curves of
rateðkÞ and grateðkÞ, we also see that the model selection
based on our method can significantly improve the perfor-
mance of Algorithm 1.

Next, we check the convergence of Algorithm 1. For
each of the 100 runs, we obtain C0 through the selection
of C. For the selected C0, we also obtain the values of struc-
tural risk in (2). We denote the values of the structural risk
as Sðk; jÞ, where k and j represent the kth iteration and the
jth run, respectively. We average Sðk; jÞ over 100 runs and
obtain SðkÞ. The average structural risk SðkÞ is shown in
the middle subplot in Fig. 1. The decreasing tendency
shows the convergence of Algorithm 1. In fact, for each
run, the structural risk values also decrease with the itera-
tions of Algorithm 1 (refer to Fig. 2).
We also calculate the Fisher ratio values RðC0; k; jÞ as in
(3). Averaging RðC0; k; jÞ over 100 runs, we obtain the aver-
age Fisher ratios RðkÞ. The average Fisher ratios RðkÞ are
shown in the right subplot of Fig. 1. From this subplot,
we can see that RðkÞ increase. We have not proved that
RðC; kÞ in (3) increase theoretically. However, we found
in our extensive simulations that RðC; kÞ increase with
respect to the iterations of Algorithm 1 in general. This is
the reason for using Fisher ratio for model selection in this
paper. Although the structural risk decreases with the iter-
ations of Algorithm 1, and small structural risk values may
imply higher classification accuracy, it is not suitable for
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selecting the parameter C. This is because for the same data
set, a small C may lead to a small structural risk value (see
(2)).

Example 2. In this example, we demonstrate the validity
and convergence of Algorithm 1 by real-world data
analysis. We apply Algorithm 1 to five real-world data
sets ‘‘Cancer”, ‘‘Wla”, ‘‘diabetes”, ‘‘Dimdata” and ‘‘ger-
man.numer_scale” (Newman et al., 1998). The dimensions
and numbers of sample vectors of the five real-world data
sets are listed in the second and third columns of Table 1,
respectively.

For each data set, we perform a 5-fold cross-validation
using Algorithm 1 with model selection. In each fold, the
data set is divided into three parts, the first is called the ini-
tial training data set ðD0Þ, the second is the test data set
which is used in retraining, the third is an independent test
set for further validation of Algorithm 1. The size ðjD0jÞ of
the initial training data sets for the 5 real data sets are
shown in the fourth column of Table 1. We select the size
of D0 according to two principles: (i) the algorithms works;
(ii) jD0j is as small as possible. Thus jD0j depends on indi-
vidual data set. For each data set, the ratio of the size of
test data set and the independent test set is 4:1. After apply-
ing Algorithm 1 to each of the five real-world data sets, we
obtain the accuracy rates for each of the 5-folds of the test
set and the independent test set. Thus there are a total of 10
accuracy rates, which are then averaged. The average pred-
ication accuracy rate for each real-world data set is listed in
the fifth column in Table 1 (The average accuracy rate for
the independent test sets of each real-world data set is
shown in the brackets).

We compare our algorithm with three other well-known
semi-supervised learning algorithms, EM algorithm, a
transductive SVM algorithm (SVMlight, http://svmlight.
joachims.org/) and a Spectral Graph Transducer (SGT-
light, http://sgt.joachims.org/), by performing a similar
analysis for each of the five data sets. The average of the
10 accuracy rates obtained by EM is listed in the sixth col-
umn in Table 1. Using T-test, we compare the 10 accuracy
rates obtained by Algorithm 1 and the 10 accuracy rates
obtained by EM. The corresponding P value is listed in
the seventh column. Similarly, the average of the 10 accu-
racy rates obtained by SVMlight and the corresponding
P value are listed in the eighth and the ninth column,
respectively, while the average of the 10 accuracy rates
obtained by SGTlight and the corresponding P value are
listed in the tenth and the eleventh column, respectively.
Table 1
Analysis results (accuracy rates % and p values) for five data sets

Data Dimen. Size jD0j Algorithm 1 EM

Cancer 10 680 4 96.37 (99.1) 96.38 (98.5)
Wla 180 2000 50 87.9 (84.7) 84.7 (82.3)
Dia 8 768 45 77.8 (75.5) 68 (64.8)
Dim 14 2200 100 91.4 (92.0) 67.3 (65.6)
German 24 1000 10 97.4 (96.7) 91.6 (88.9)
For the three algorithms, the average accuracy rates for
the independent test sets of each real-world data set are
shown in the brackets.

From statistical tests, the performance of Algorithm 1 is
significantly better than that of EM and SVMlight for the
last 4 data sets. For the first data set, there is no significant
difference between the performance of Algorithm 1 and
that of EM and SVMlight. For the second data set, the per-
formance of SGTlight is significantly better than our algo-
rithm. For the fourth data set, there is no significant
difference between the performance of our algorithm and
that of SGTlight. For the other three datasets, our algo-
rithm is significantly better than SGTlight in performance.

Here we would like to stress that the performance differ-
ence between Algorithm 1 and the other three algorithms
may be due to the following reasons: First, performance
of classification algorithms may depend on the nature of
the classification task (Duda et al., 2001). Although Algo-
rithm 1 and the other three algorithms can handle datasets
with small training data, Algorithm 1 may be more suitable
for certain data sets. Second, we performed model selection
for Algorithm 1 as in Section 2.2. We also performed
model selection for SVMlight using cross-validation, how-
ever we could not obtain promising results. This is because
model selection based on cross-validation with such a small
amount of training data for these particular datasets is not
reliable. Thus we use the default settings for the parameters
of SVMlight. Similarly, we also use the default parameters
of SGTlight.

To demonstrate the convergence of Algorithm 1, we
show five SVM objective function (structural risk) curves
in the left subplot of Fig. 2, which are obtained in the 5-
fold cross-validation for data set ‘Dia’. We can see that
the five curves converge fast. The decrease of structural risk
generally leads to a higher classification accuracy. This also
explains the effectiveness of Algorithm 1.

In order to demonstrate that the Fisher ratios generally
increase with respect to iterations of Algorithm 1, we pres-
ent two curves of the Fisher ratios of 8 iterations for the
data set ‘Dia’ in the right subplot of Fig. 2. They are
obtained in the model selection in the first fold of the
cross-validation. The curve with circles corresponds to
the selected parameter C0, while the curve with stars depicts
the average Fisher ratios over all C values (C 2
f0:05; 0:15; . . . ; 0:95g). The two curves show the decreasing
tendency of Fisher ratios.

At the end of this section, we would like to state the
advantage of Algorithm 1 in terms of computational
P values SVMlight P value SGTlight P value

0.880 95.45 (94.3) 0.441 89.2 (92.5) 0.003
0.010 77.7 (78.4) 0.000 91.9 (89.8) 0.003
0.027 64.3 (67.2) 0.008 64.2 (61.7) 0.008
0.000 69.8 (66.8) 0.000 88.2 (87.6) 0.15
0.0001 79 (83.4) 0.000 68 (61.4) 0.000

http://svmlight.joachims.org/
http://svmlight.joachims.org/
http://sgt.joachims.org/
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complexity. As shown in Figs. 1 and 2, this iterative algo-
rithm can converge fast. According to our simulated and
real-world data analysis examples, it generally converges
in 10 iterations. This will be further demonstrated in the
next section (the left subplot of Fig. 5). From Algorithm
1, the computation burden of each iteration is equivalent
to that of a standard SVM. Thus Algorithm 1 has lower
computational burden than that of a standard transductive
SVM algorithm. For instance, when SVMlight is applied to
‘‘Dimdata” data set, the time taken is 5:28� 105s in our
computer (Intel Pentium 2 GHz processor and 2 GB
RAM). This is because too many (1826) test data samples
are used to retrain the classifier. The time taken for Algo-
rithm 1 with model selection is around 69 s even when all
1826 test data samples are used in retraining the classifier.

4. Application in a BCI system

In this section, we illustrate the application of Algorithm
1 in a P300-based BCI speller. Currently, the electroen-
cephalogram (EEG) is a prevailing brain signal for non-
invasive BCIs. Event related potential (ERP), which
exploits the electrophysiological responses measured by
the EEG to a certain event such as the presentation of an
external stimuli, is often used in BCIs. One robust feature
is a positive displacement of EEG amplitude (ERP) occur-
ring around 300 ms after onset of an unfrequent and
expected stimulus. This is known as the P300 (see Fig. 3).
P300 is a common feature in BCI spellers (Donchin,
1981; Farwell and Dochin, 1988; Serby et al., 2005). The
main issue in P300-based BCIs is to classify the P300
response from the background noise. A generally tedious
and time-consuming training process is required for
P300-based BCIs, in order to build a reliable classification
model for each subject. It is essential to reduce training
effort so that P300-based BCI is more convenient to use.
100 200 300
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Fig. 3. An example of the average P300 response (lv) to a visual stimulus
and average background noise.
In the following data analysis, we will show that Algo-
rithm 1 can be used to reduce training effort in a P300-
based speller. The dataset employed in this example was
collected from 10 subjects by a P300-based speller para-
digm. The experiment details and data collection are
described in (Thulasidas et al., 2006). During the experi-
ment, a 6-by-6 matrix that includes alphabets and numbers
is presented to the user on a computer screen (Fig. 4). The
user focuses on his desired character. Each row or column
of the matrix is intensified successively in a random order.
Each intensification lasts for 100 ms followed by a 75 ms
blank interval. 12 intensifications make up one run which
covers all the rows and columns of the matrix. Two of these
twelve consecutive intensifications in each run contain the
desired symbol, where P300 potential is generated. For
each character, 10 runs of twelve intensifications are car-
ried out. Thus when the user focuses on a character, there
are 10� 12 ¼ 120 intensifications in which 20 intensifica-
tions happen on the column and row containing the char-
acter, the other 100 intensifications happen on the other 5
columns and 5 rows without the desired character. The task
of the speller is to identify the user’s desired character
based on the EEG data collected in the 120 intensifications.

The dataset contains training data and testing data col-
lected from 10 subjects. The system is trained separately for
each user using a common phrase with 41 characters ‘‘THE
QUICK BROWN FOX JUMPS OVER LAZY DOG
246138 579”. The same phrase is also used in testing data
collection with random word order. Using recognizable
words or random characters makes no difference in terms
of spelling accuracy. This is because the recognition of
the desired character is only dependent on three factors:
(1) the subject focuses his eyes on the desired character;
(2) P300 potential occurs when the row and column of
the matrix, which contain the desired character, are inten-
sified; and (3) the algorithm of BCI system can detect the
P300 potential correctly.

In our data analysis, the original test data is used as an
independent test set, which is not used for retraining in
Algorithm 1. The data corresponding to the first three
characters of the original training data set is used as an ini-
tial training data set. The other 38 characters are used for
retraining and testing.
Fig. 4. The stimulus matrix shown on a computer monitor to the user for
a P300 BCI speller. One row or one column of the matrix is intensified
successively in a random order.
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Fig. 5. Left: average accuracy curves obtained after each iteration of
Algorithm 1 (the curve with ‘‘�” is obtained by Algorithm 1 with model
selection, while the curve with ‘‘o” is obtained by Algorithm 1 without
model selection. Right: Solid line with ‘‘�” is the accuracy curve obtained
by an incremental version of Algorithm 1 which can be used in an online
scenario. Dashed line with ‘‘o” is the accuracy curve obtained by the
standard SVM which uses all the first 41 characters for training as in our
original experiment. Using new incoming test data, Algorithm 1 can
retrain the SVM and thus improve the adaptability of BCI system.

Table 2
Accuracy rates (%) for a data set from a P300-based BCI speller

Test dataset Ind. test dataset

Algorithm 1 (3 training symbols) 96.1 98.5
Standard SVM (3 training symbols) 79.2 84.4
Standard SVM (41 training symbols) No accuracy 99.0
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After lowpass filtering is performed on the EEG data,
we construct a feature vector for each intensification as
follows:

First, 24 EEG channels are used as in the original exper-
iment. For the 24 channels, we extract 24 segments of EEG
data, respectively. Each segment is between 150 ms and
500 ms from the start of the intensification, i.e. each seg-
ment is 350 ms and contains 87 data points (the sampling
rate is 250 Hz). Next, we downsample these segments by
a rate of 5. About 17 data points are obtained for each seg-
ment. Finally, by concatenating these data points of the 24
segments, a feature vector containing 408 (17� 24) data
points is constructed for an intensification.

As stated above, 120 intensifications occur for each
character. Therefore, a character corresponds to 120 fea-
ture vectors. These feature vectors are categorized into
two classes. The first class contains 20 feature vectors with
their corresponding 20 intensifications occur on the row or
column containing the desired character. Physiologically,
P300 can be detected in each of these 20 feature vectors.
The other 100 feature vectors which do not contain P300
belong to the second class.

For each subject, our initial training data set contains
360 feature vectors corresponding to 3 characters. Among
the 360 feature vectors, only 60 feature vectors belong to
the first class with P300, the other 300 feature vectors
belong to the second class. Our test data set contains
38� 120 ¼ 4560 feature vectors corresponding to 38 char-
acters. Our independent test data set contains 41� 120 ¼
4920 feature vectors corresponding to 41 characters.

We now apply Algorithm 1 to the above data set. As a
result, we obtain a SVM score for each feature vector of the
test data set and independent test data set. We use these
scores to predict the desired characters. Note that the 120
feature vectors can be equally divided into 12 groups.
The first 6 groups correspond to 6 intensified rows, the last
6 groups correspond to 6 intensified columns, respectively.
For each group, we sum their corresponding SVM scores
and denote the summation as si, i ¼ 1; . . . ; 12). Suppose
that

si1 ¼ maxfs1; . . . ; s6g; si2þ6 ¼ maxfs7; . . . ; s12g:

Then the character contained in the i1th row and the i2th
column is our predicted one. Furthermore, we calculate
the prediction accuracy rates for test data set and indepen-
dent test data set.

The prediction accuracy rates averaged over 10 subjects
obtained by Algorithm 1 are given in the second row of
Table 2. The accuracy rates in the third row are given for
a standard SVM, which also uses the first 3 characters
for training. The accuracy rate in fourth row is given for
a standard SVM, which uses all the 41 characters for train-
ing. Since none of these characters are used for test, no
accuracy rate is given for the test dataset in the fourth
row. It can be seen from Table 2 that: Algorithm 1 can
obtain a comparable accuracy rate (98.5%) as the standard
SVM (99.0%), however the initial training set (3 characters)
of Algorithm 1 is much smaller than that of the standard
SVM (41 characters). Thus the training data collection time
(training time) of the BCI speller can be potentially reduced
much while not affecting the accuracy.

In the above offline analysis, we also use the data of 38
characters (without using their true labels) for retraining in
Algorithm 1. For the kth iteration of Algorithm 1 with
model selection, we calculate the average accuracy rateðkÞ
over 10 subjects for test data sets and independent test data
sets. With regards to model selection, we search the C value
from the set S ¼ f0:01; 0:06; . . . ; 0:46; 0:5g. The left subplot
of Fig. 5 shows the curves (with ‘‘�”) of average accuracy
rates rateðkÞ.

To demonstrate the validity of our model selection
method as in Section 2.2, for each C 2 S, we also calculate
the prediction accuracy rates rateðC; kÞ similarly as above.
We average rateðC; kÞ over all 11 possible candidates of C,
and obtain rateðkÞ representing the average performance of
Algorithm 1 without model selection. rateðkÞ are depicted
by the curve with ‘‘o” in the left subplot of Fig. 5. From
this subplot, we can see that rateðkÞ is obviously larger than
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rateðkÞ. This shows our model selection method is an
improvement over no model selection.

Additionally, the accuracy curves in the left subplot of
Fig. 5 further demonstrate that Algorithm 1 converges fast
in about 5 iterations for this example.

Presently, one challenging issue in P300 speller is to
considerably reduce this number of runs. State-of-the-art
results can now reach almost perfect classification accu-
racy with as few as 4 runs. See for instance (Rak-
otomamonjy et al., 2005; Hoffmann et al., 2005; Rivet
and Souloumiac, 2007). As shown above, 10 runs are used
in this paper as in the experiment setting. We tried to
reduce the number of runs in our data analysis. We found
that when we used 6 runs, the results were still acceptable
(not presented in this paper due to limited page space).
But then the algorithm in this paper only can reduce
the size of training data set instead of the number of runs.
If a small number of runs leads to the BCI speller’s not
working even with a big training data set, then our algo-
rithm also does not work. Of course, if l runs (l is quite
small, e.g. 4) are sufficient for a BCI speller with a big
training data set, our algorithm can be used for reducing
the size of the training data set.

In the following, we simulate an online scenario to illus-
trate that an incremental version of Algorithm 1 can be
used to improve the adaptability of the P300-based BCI
speller in real time. First, we use the data of the first 3 char-
acters to train a SVM. The SVM is used to classify the data
of the subsequent 10 characters (4th–13th characters).
Using the initial training data set and the data of these
10 characters with predicted labels, we retrain a new
SVM using Algorithm 1 and classify the next 10 characters
(14th–23rd characters) and so on. We stop retraining the
SVM model after all the 38 characters are used. The inde-
pendent test set are then classified by the finalized SVM
model. The curve of average accuracy for the simulated
online scenario is depicted by the solid line with ‘‘�” in
the right subplot of Fig. 5. The dashed line with ‘‘o” is
the average accuracy curve for the standard SVM, which
uses all the first 41 characters for training as in our original
experiment. Since no classification takes place for these 41
training characters, this is represented by a zero accuracy
rate in the right subplot. The prediction accuracy rates of
the last 41 characters obtained by Algorithm 1 and the
standard SVM are almost equal in the simulated online sce-
nario. However, the difference is: using an incremental ver-
sion of Algorithm 1, we can start to classify incoming data
much earlier than the standard SVM while keeping a satis-
factory accuracy rate.

Furthermore, once the use feels that the accuracy of the
system is not satisfactory, training of the SVM can be
restarted using new incoming data. In this way, we can
use Algorithm 1 to improve the adaptability of the BCI sys-
tem. There is no substantial obstacle to implement the
above learning in real time. When the subject is using the
BCI speller, another computer (even the same one provided
that it has sufficient computation speed) can simulta-
neously carry out the learning using the recorded data in
real time. Once the learning is finished, the BCI system
parameters can be updated using the new values.

5. Conclusions

In this paper, we present an iterative self-training semi-
supervised SVM algorithm and a corresponding model
selection method. This model selection method is based
on Fisher ratio and it is suitable when the training data
set is small and cross-validation-based model selection
method may not work. The validity of this model selection
method is demonstrated in our data analysis examples. As
an iterative algorithm, the self-training semi-supervised
SVM is proven to be convergent, although this conver-
gence is local. By comparing with two semi-supervised
learning algorithms, EM and SVMlight, in several real-
world datasets, the effectiveness of this algorithm is
demonstrated. This algorithm converges fast and has low
computational burden. Finally, an application of our algo-
rithm in a P300-based BCI speller is illustrated. This algo-
rithm can be used to reduce training effort and improve
adaptability of the P300-based BCI speller in an online
scenario.
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